
Язык программирования

Лекция№ 2
Владимир Владимирович Руцкийrutsky.vladimir@gmail.com

Язык программирования http://localhost:8000/#1

1 of 40 17.03.2014 01:14

План занятия
Повторение

Модули, области видимости, полезные функции
Практика

·
·
·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 2

Язык программирования http://localhost:8000/#1

2 of 40 17.03.2014 01:14

Повторение

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 3

Язык программирования http://localhost:8000/#1

3 of 40 17.03.2014 01:14

Модули
Программы на Python пишутся внутри *.py файлов —
модулей

Модули можно выполнять (python.exe hello.py):
def my_hello():
 print("Hello, world!")
if __name__ == "__main__":
 my_hello()
Объекты из модулей можно использовать в других
модулях (или в интерактивном режиме) с помощью
команды import:
>>> import hello
>>> hello.my_hello()
'Hello, World!'
>>>

·

·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 4

Язык программирования http://localhost:8000/#1

4 of 40 17.03.2014 01:14

Стандартная библиотека (1/2)
Стандартная библиотека Python состоит из большого
числа модулей: http://docs.python.org/3/library/index.html
Работа со строками
Работа с двоичными данными
Структуры данных
Математические функции и типы
Объекты для функционального программирования
Работа с файлами и директориями
Сериализация и сохранение данных, БД
Сжатие данных и работа с архивами
Работа с файлами определённых типов
Криптографические функции
Работа с ОС
Параллельное выполнение кода
...

·
·
·
·
·
·
·
·
·
·
·
·
·
·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 5

Язык программирования http://localhost:8000/#1

5 of 40 17.03.2014 01:14

Стандартная библиотека (2/2)
продолжение:
Межпроцессорное взаимодействие
Работа с типами Internet
Работа с HTML/XML
Интернет протоколы
Мультимедиа
Интернационализация
Фреймворки для программ
Графический интерфейс с помощью Tk
Средства для разработки
Средства отладки и профилирования

·
·
·
·
·
·
·
·
·
·
·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 6

Язык программирования http://localhost:8000/#1

6 of 40 17.03.2014 01:14

Модуль random
>>> import random
>>> random.random() # Случайное float число в диапазоне [0, 1)
0.5827532718821743
>>> random.randint(15, 30) # Случайное int число в диапазоне [15, 30]
29
>>> random.uniform(3.5, 10.0) # Случайное float число из диапазона [3.5, 10.0]
7.332874018578613
>>> # Есть некоторые популярные распределения: равномерное, Бета, экспоненциальное,
... # Гамма, Гаусса, Нормальное, Парето
... random.gauss(mu=0, sigma=1)
0.512533053672749
>>> a = ['Alice', 'Bob', 'Valery']
>>> random.choice(a) # Вернёт произвольный элемент последовательности
'Valery'
>>> random.shuffle(a) # Случайным образом перемешает последовательность
>>> a
['Alice', 'Valery', 'Bob']
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 7

Язык программирования http://localhost:8000/#1

7 of 40 17.03.2014 01:14

Способы импортирования (1/2)
>>> # При импортировании модуля его можно "переименовать"
... import random as rnd
>>> rnd.random()
0.5827532718821743
>>> # Можно импортировать только некоторые имена в локальную область видимости
... from random import choice
>>> choice(['a', 'b', 'c', 'd'])
'b'
>>> # Можно импортировать имя из модуля, и переименовать его:
... from random import uniform as unf
>>> unf(-3, 3)
-2.519376744749322
>>> # Можно импортировать несколько модулей в одной команде (не рекомендуется)
... import random, os, sys
>>> sys.platform
'linux'
>>> # Можно импортировать несколько имён из модуля:
... from random import gammavariate as G, choice, uniform as unf
>>> # При импортировании имён из модулей в текущей области видимости создаются
... # ссылки на объекты из импортируемых модулей, копирования не происходит:
... rnd is random
True
>>> rnd.choice is choice
True
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 8

Язык программирования http://localhost:8000/#1

8 of 40 17.03.2014 01:14

Способы импортирования (2/2)
>>> # Можно импортировать все имена из модуля в текущую область видимости:
... from random import *
>>> choice(['a', 'b', 'c', 'd'])
'b'
>>> random()
0.5827532718821743
>>> dir()
[..., 'betavariate', 'choice', 'expovariate', 'gammavariate', 'gauss', 'getrandbits', ...]
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 9

Язык программирования http://localhost:8000/#1

9 of 40 17.03.2014 01:14

Скрытие имён в модулях (1/2)
from ... import * не импортирует имена, начинающиеся с подчеркивания — вPython принято называть "скрытые" функции и имена с подчеркивания
rndcolors1.py
from random import choice
colors = ["red", "green", "blue"]
def random_color():
 return choice(colors)
>>> from rndcolors1 import *
>>> dir()
[..., 'choice', 'colors', 'random_color']
>>>
rndcolors2.py
from random import choice
_colors = ["red", "green", "blue"]
def random_color():
 return random.choice(_colors)
>>> from rndcolors2 import *
>>> dir()
[..., 'choice', 'random_color']

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 10

Язык программирования http://localhost:8000/#1

10 of 40 17.03.2014 01:14

Скрытие имён в модулях (2/2)
Если в модуле объявлена глобальная переменная __all__, то с помощью from
... import * из этого модуля будут импортироваться только имена,
перечисленные в списке или кортеже __all__
rndcolors3.py
from random import choice
__all__ = ["random_color"]
colors = ["red", "green", "blue"]
def random_color():
 return random.choice(colors)
>>> from rndcolors3 import *
>>> dir()
[..., 'random_color']

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 11

Язык программирования http://localhost:8000/#1

11 of 40 17.03.2014 01:14

Модуль builtins
>>> # Встроенные функции находятся в специальном модуле `builtins'
... import builtins
>>> builtins.print('Test!')
Test!
>>> builtins.print is print
True
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 12

Язык программирования http://localhost:8000/#1

12 of 40 17.03.2014 01:14

Пакеты
Модули можно объединять в пакеты:
sound/ Пакет верхнего уровня
 __init__.py Инициализация пакета работы со звуком (sound)
 formats/ Подпакет для конвертирования форматов файлов
 __init__.py
 wavread.py (чтение wav)
 wavwrite.py (запись wav)
 effects/ Подпакет для звуковых эффектов
 __init__.py
 echo.py (эхо)
 surround.py (фон)
 reverse.py (обращение)

Использование:
Импортируем модуль sound/effects/echo.py
import sound.effects.echo
sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

или:
from sound.effects import echo
echo.echofilter(input, output, delay=0.7, atten=4)

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 13

Язык программирования http://localhost:8000/#1

13 of 40 17.03.2014 01:14

Файл __init__.py
Пакет — директория, содержащая модули и/или пакеты
Модуль можно превратить в пакет (и наоборот):
sum как модуль:
sum.py:
def my_sum(a, b):
 return a + b

sum как пакет:
sum/__init__.py:
def my_sum(a, b):
 return a + b

Использование одинаковое:
>>> import sum
>>> sum.my_sum(10, 20)
30
>>>

·
·

·

·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 14

Язык программирования http://localhost:8000/#1

14 of 40 17.03.2014 01:14

Функция dir()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

>>> # Функция dir() позволяет получить список членов (атрибутов) объекта
... a = 30
>>> dir(a)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', ...
>>> a.__add__(3)
33
>>> def f(a, b):
... """Вычисляет сумму двух чисел"""
... c = a + b
... return c
...
>>> dir(f)
['__annotations__', '__call__', '__class__', '__closure__', '__code__', ...
>>> f.__name__
'f'
>>> f.__doc__
'Вычисляет сумму двух чисел'
>>> f.__code__.co_varnames # интроспекция — доступ к внутренней информации об объектах
('a', 'b', 'c')
>>> # Вызванная без аргументов, dir() возвращает список доступных имён в локальной
... # области видимости.
... dir()
['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 'a', 'f']
>>> __name__
'__main__'
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 15

Язык программирования http://localhost:8000/#1

15 of 40 17.03.2014 01:14

Способы выполнения кода наPython (1/2)
Прямые способы:

Интерактивный режим:
>>> a = 10

Запуск модуля:
C:\>C:\Python33\python.exe hello.py
Hello!
C:\>

Выполнение команд, непосредственно переданных интерпретатору:
C:\>C:\Python33\python.exe -c "a = 10; print(a)"
10
C:\>

Запуск модуля, доступного в текущем дистрибутиве Python:
C:\>C:\Python33\python.exe -m random
2000 times random
0.001 sec, avg 0.500839, stddev 0.287432, min 0.000557505, max 0.999779
2000 times normalvariate
0.003 sec, avg 0.0308376, stddev 1.02038, min -3.30629, max 3.85466
...
C:\>

·
·

·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 16

Язык программирования http://localhost:8000/#1

16 of 40 17.03.2014 01:14

Способы выполнения кода наPython (2/2)
Косвенные способы — при импортировании модулей:
>>> import random # В результате этой команды модуль будет интерпретирован
>>>

module.py:
print("This module '__name__' variable is:", __name__)

При прямом способе выполнения команды, вводимые в интерактивном режиме,
или из интерпретируемого модуля, или из аргументов к python.exe -c,
выполняются в виртуальном модуле с именем __main__:
C:\>C:\Python33\python.exe module.py
This module '__name__' variable is: __main__
C:\>

При интерпретировании модуля в результате импортирования (косвенный способ
выполнения) __name__ будет указывать на имя модуля:
>>> import module
This module '__name__' variable is: module

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 17

Язык программирования http://localhost:8000/#1

17 of 40 17.03.2014 01:14

Отладочный код в библиотеках
С помощью __name__ можно определить импортирован ли модуль, либо он
выполняется напрямую

Типичное использование в библиотеках — при запуске библиотечного модуля
запускать тесты; even.py:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

def is_even(number):
 """Возвращает True, если number — чётный"""
 if number % 4 == 0: # Ошибка
 return True
 return False
def _test():
 assert is_even(4)
 assert not is_even(3)
 assert is_even(-20)
 assert is_even(2)
if __name__ == "__main__":
 _test()

C:\>C:\Python33\python.exe -m even.py
Traceback (most recent call last):
 File "module_test.py", line 17, in <module>
 _test()
 File "module_test.py", line 13, in _test
 assert is_even(2)
AssertionError
C:\>

·
·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 18

Язык программирования http://localhost:8000/#1

18 of 40 17.03.2014 01:14

Шаблон программы на Python(1/2)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Шаблон программы на Python
#
Это комментарий. Любую программу стоит начинать с описания того,
для чего она предназначена.
Импортируем необходимые модули
import sys
def main():
 """Main program function"""
 # sys.argv содержит список аргументов командной строки.
 # sys.argv[0] хранит имя запущенного скрипта.
 if len(sys.argv) == 1:
 print("Ошибка! Слишком мало аргументов!")
 sys.exit(1)
 else:
 print("Программа", sys.argv[0], "была запущена с аргументами:")
 for arg in sys.argv[1:]:
 print(arg)
if __name__ == "__main__":
 # Если скрипт запущен как "python.exe template.py",
 # то это условие будет выполнено и будет вызвана main().
 # Впоследствии можно будет написать тесты, которые будут
 # импортировать этот модуль и вызывать функции из него.
 main()

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 19

Язык программирования http://localhost:8000/#1

19 of 40 17.03.2014 01:14

Шаблон программы на Python(2/2)
C:\>C:\Python33\python.exe template.py
Ошибка! Слишком мало аргументов!
C:\>C:\Python33\python.exe template.py Питон 1 2 3
Программа template.py была запущена с аргументами:
Питон
1
2
3

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 20

Язык программирования http://localhost:8000/#1

20 of 40 17.03.2014 01:14

Модуль pprint
pprint.pprint(object, stream=None, indent=1,width=80, depth=None)

"pretty-print". Выводит на экран текстовое представление объекта с
отступами и переносами строк
То же, что и просто print(), но форматированное
>>> john = {"name": "John", "age": 30, "graduate": ["30", "SPBSTU", "MIT"]}
>>> kate = {"name": "Kate", "age": 28, "graduate": ["85", "SPBSTU"]}
>>> people = [john, kate]
>>> print(people)
[{'age': 30, 'graduate': ['30', 'SPBSTU', 'MIT'], 'name': 'John'}, {'age': ...
>>> import pprint
>>> pprint.pprint(people)
[{'age': 30, 'graduate': ['30', 'SPBSTU', 'MIT'], 'name': 'John'},
 {'age': 28, 'graduate': ['85', 'SPBSTU'], 'name': 'Kate'}]
>>>

pprint.pformat(object, indent=1, width=80,depth=None)
Возвращает строку с результатом, вместо печати на экран

·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 21

Язык программирования http://localhost:8000/#1

21 of 40 17.03.2014 01:14

Имена (переменные) в Python
В Python имена — это метки, ссылающиеся на объекты в памяти (связанные с
объектами, binded)
Чтобы создать новую метку (или переопределить старую) можно использовать:
команду присваивания:
a = 30
команду определения функции (или класса):
def my_sum(x, y):
 return x + y
команду import:
import random

·
·

·
·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 22

Язык программирования http://localhost:8000/#1

22 of 40 17.03.2014 01:14

Области видимости
Код на Python может выполняться:
непосредственно внутри модуля
внутри функции

Перед выполнением кода внутри модуля или функции,
интерпретатор создаёт область видимости для модуля
или функции (далее о.в.)
Область видимости — это словарь пар:

(имя метки, объект)
При создании новой метки она помещается в словарь
текущей области видимости

·
·
·

·

·
·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 23

Язык программирования http://localhost:8000/#1

23 of 40 17.03.2014 01:14

Область видимости в модуле
>>> import pprint
>>> # Содержимое текущей (локальной) области видимости можно получить
... # с помощью locals() (только на чтение)
... pprint.pprint(locals())
{'__builtins__': <module 'builtins' (built-in)>,
 '__doc__': None,
 '__loader__': <class '_frozen_importlib.BuiltinImporter'>,
 '__name__': '__main__',
 '__package__': None,
 'pprint': <module 'pprint' from '/usr/lib/python3.3/pprint.py'>}
>>> # Создаём метку в текущей области видимости:
... a = 10
>>> pprint.pprint(locals())
{'__builtins__': <module 'builtins' (built-in)>,
 '__doc__': None,
 '__loader__': <class '_frozen_importlib.BuiltinImporter'>,
 '__name__': '__main__',
 '__package__': None,
 'a': 10,
 'pprint': <module 'pprint' from '/usr/lib/python3.3/pprint.py'>}
>>> def my_sum(a, b):
... return a + b
...
>>> pprint.pprint(locals())
{'__builtins__': <module 'builtins' (built-in)>,
 '__doc__': None,
 '__loader__': <class '_frozen_importlib.BuiltinImporter'>,
 '__name__': '__main__',
 '__package__': None,
 'a': 10,
 'my_sum': <function my_sum at 0x7f1ca3dd38c0>,
 'pprint': <module 'pprint' from '/usr/lib/python3.3/pprint.py'>}
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 24

Язык программирования http://localhost:8000/#1

24 of 40 17.03.2014 01:14

Область видимости в функции
>>> import pprint
>>> def my_sum(a, b):
... # В функции своя локальная область видимости
... print("my_sum 1:\n", pprint.pformat(locals()), sep='')
... sum = a + b
... print("my_sum 2:\n", pprint.pformat(locals()), sep='')
... return sum
...
>>> pprint.pprint(locals())
{'__builtins__': <module 'builtins' (built-in)>,
 '__doc__': None,
 '__loader__': <class '_frozen_importlib.BuiltinImporter'>,
 '__name__': '__main__',
 '__package__': None,
 'my_sum': <function my_sum at 0x7f1ca3dd38c0>,
 'pprint': <module 'pprint' from '/usr/lib/python3.3/pprint.py'>}
>>> my_sum(10, 20)
my_sum 1:
{'a': 10, 'b': 20}
my_sum 2:
{'a': 10, 'b': 20, 'sum': 30}
30
>>> # Изменение в локальной области my_sum не меняет содержимое области
... # видимости модуля
... pprint.pprint(locals())
{'__builtins__': <module 'builtins' (built-in)>,
 '__doc__': None,
 '__loader__': <class '_frozen_importlib.BuiltinImporter'>,
 '__name__': '__main__',
 '__package__': None,
 'my_sum': <function my_sum at 0x7f1ca3dd38c0>,
 'pprint': <module 'pprint' from '/usr/lib/python3.3/pprint.py'>}
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 25

Язык программирования http://localhost:8000/#1

25 of 40 17.03.2014 01:14

Поиск имён
Все метки в Python определены в каком-то модуле
Для блока кода определена глобальная область
видимости — область видимости модуля, в котором этот
блок кода был задан
Когда в каком-то блоке происходит обращение к метке,
интерпретатор смотрит в следующие о.в.:
локальную о.в. блока
внешние о.в. для текущего блока
если, например, функция задана внутри функции
глобальную о.в. для текущего блока
модуль, в котором блок определён
встроенную о.в.
содержимое модуля builtins

·
·

·
·
·

·
·

·
·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 26

Язык программирования http://localhost:8000/#1

26 of 40 17.03.2014 01:14

Глобальная область видимости
>>> import pprint
>>> # Глобальную область видимости можно получить с помощью globals()
>>> pprint.pprint(globals())
{'__builtins__': <module 'builtins' (built-in)>,
 '__doc__': None,
 '__loader__': <class '_frozen_importlib.BuiltinImporter'>,
 '__name__': '__main__',
 '__package__': None,
 'pprint': <module 'pprint' from '/usr/lib/python3.3/pprint.py'>}
>>> # В блоке кода модуля глобальная о.в. совпадает с локальной
>>> globals() is locals()
True
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 27

Язык программирования http://localhost:8000/#1

27 of 40 17.03.2014 01:14

Команда global
>>> import pprint
>>> V1 = "global V1" # определим глобальные переменные в модуле
>>> V2 = "global V2"
>>> V3 = "global V3"
>>> def func():
... print("V1 =", V1) # V1 находится из глобальной о.в.
... V2 = "func() V2" # метка помещается в локальную о.в., перекрывая глоб. V2
... print("V2 =", V2)
... global V3 # указываем, что метка V3 — из глобальной о.в.
... V3 = "changed in func()"
... print("V3 =", V3)
...
>>> pprint.pprint(locals())
{'V1': 'global V1',
 'V2': 'global V2',
 'V3': 'global V3',
 ...
 'func': <function func at 0x7f1198dc8680>,
>>> func()
V1 = global V1
V2 = func() V2
V3 = changed in func()
>>> pprint.pprint(locals())
{'V1': 'global V1',
 'V2': 'global V2',
 'V3': 'changed in func()',
 ...
 'func': <function func at 0x7f1198dc8680>,
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 28

Язык программирования http://localhost:8000/#1

28 of 40 17.03.2014 01:14

Функция enumerate()
enumerate(iter, start=0) — "пересчитать"
iter — последовательность
start — опциональный начальный индекс
возвращает последовательность пар (индекс, элемент iter)

>>> a = ["A", "B", "C"]
>>> list(enumerate(a))
[(0, 'A'), (1, 'B'), (2, 'C')]
>>> list(enumerate(a, 10))
[(10, 'A'), (11, 'B'), (12, 'C')]
>>> # Удобно использовать для получения индекса при итерации по последовательности
... for idx, val in enumerate(a):
... print("idx =", idx, "val =", val)
...
idx = 0 val = A
idx = 1 val = B
idx = 2 val = C
>>>

·
·
·
·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 29

Язык программирования http://localhost:8000/#1

29 of 40 17.03.2014 01:14

Функция zip() (1/2)
zip(iter1[, iter2[, ...]])
от англ. «zip» — «застёжка молния» — соединить два списка, как
зубцы молнии
iter* — последовательности
возвращает последовательность кортежей:

(первые элементы последовательностей)
(вторые элементы последовательностей)
(третьи элементы последовательностей)
...
длина результирующей последовательности равна минимальной
длине входной последовательности

·
·
·
·

·
·
·
·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 30

Язык программирования http://localhost:8000/#1

30 of 40 17.03.2014 01:14

Функция zip() (2/2)
>>> a = ["A", "B", "C"]
>>> b = ["a", "b", "c"]
>>> list(zip(a, b))
[('A', 'a'), ('B', 'b'), ('C', 'c')]
>>> # длина результирующей последовательности равна длине минимальной входной посл.
... list(zip(range(10), a, b))
[(0, 'A', 'a'), (1, 'B', 'b'), (2, 'C', 'c')]
>>> # Удобно использовать для одновременной итерации по нескольким посл.:
... for x, y in zip(a, b):
... print(x, y)
...
A a
B b
C c
>>> for idx, (x, y) in enumerate(zip(a, b)):
... print(idx, "-", x, y)
...
0 - A a
1 - B b
2 - C c
>>> list(zip(a))
[('A',), ('B',), ('C',)]
>>> list(zip(*a))
[('A', 'B', 'C')]
>>> M = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
>>> list(zip(*M))
[(11, 21, 31), (12, 22, 32), (13, 23, 33)]
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 31

Язык программирования http://localhost:8000/#1

31 of 40 17.03.2014 01:14

Функция map() (1/2)
map(func, iter1[, iter2[, ...]]) — применить
func к каждому элем. посл.
iter* — последовательности аргументов
возвращает последовательность:

func(первые элементы последовательностей)
func(вторые элементы последовательностей)
func(третьи элементы последовательностей)
...
длина результирующей последовательности равна минимальной
длине входной последовательности

·
·
·

·
·
·
·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 32

Язык программирования http://localhost:8000/#1

32 of 40 17.03.2014 01:14

Функция map() (2/2)
>>> a = ["A", "B", "C"]
>>> def prefix(s, prefix="prefix_"):
... return prefix + s
...
>>> # Результат: последовательность [prefix(a[0]), prefix(a[1]), prefix(a[2]), ...]
... list(map(prefix, a))
['prefix_A', 'prefix_B', 'prefix_C']
>>> b = ["zero_", "one_", "two_"]
>>> # Результат: последовательность [prefix(a[0], b[0]), prefix(a[1], b[1]), ...]
... list(map(prefix, a, b))
['zero_A', 'one_B', 'two_C']
>>> list(map(len, b))
[5, 4, 4]
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 33

Язык программирования http://localhost:8000/#1

33 of 40 17.03.2014 01:14

Функция filter()
filter(func, iter) — вернуть последовательность только из тех элементов
x, для которых func(x) истина
func может быть None, эквивалентно filter(bool, iter)
>>> def long_enough(s):
... return len(s) > 3
...
>>> a = ["Alice", "Bob", "Valery", "Nicholas", "I"]
>>> list(filter(long_enough, a))
['Alice', 'Valery', 'Nicholas']
>>> list(filter(None, ['', 'a', 0, 1, True, False]))
['a', 1, True]
>>>

·
·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 34

Язык программирования http://localhost:8000/#1

34 of 40 17.03.2014 01:14

Форматирование строк
Документация: http://docs.python.org/3/library/string.html#formatstrings
>>> "Hello, {0}".format("Peter")
'Hello, Peter'
>>> "Hello, {0} {1}. Or maybe {1} {0}?".format("John", "Smith")
'Hello, John Smith. Or maybe Smith John?'
>>> "Hello, {} {} {}".format(1, 2, 3)
'Hello, 1 2 3'
>>> "Object: {0} - size is {size}, weight is {w}".format("potato", size=10, w="0.1 kg")
'Object: potato - size is 10, weight is 0.1 kg'
>>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(30)
'int: 30; hex: 1e; oct: 36; bin: 11110'
>>> "{:10.3}".format(3.141592653589793)
' 3.14'
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 35

Язык программирования http://localhost:8000/#1

35 of 40 17.03.2014 01:14

Литералы в других системах
счисления
>>> # В Python можно записывать целочисленные литералы в разных системах счисления
... 0xA36832 # шестнадцатеричная
10709042
>>> 0o655 # восьмеричная
429
>>> 0b00011110 # двоичная
30
>>> # Строковые представления в разных системах счисления:
... hex(10709042)
'0xa36832'
>>> oct(429)
'0o655'
>>> bin(30)
'0b11110'
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 36

Язык программирования http://localhost:8000/#1

36 of 40 17.03.2014 01:14

Неименованные функции
Можно создать неименованную функцию с помощью
lambda:
>>> f = lambda arg1, arg2: arg1**arg2
>>> f(2, 3)
8
>>>
Это удобно для обработки списков:
>>> # оставляет только те элементы, у которых длина 3
... filter(lambda s: len(s) == 3, ['one', 'two', 'three'])
['one', 'two']
>>>
>>> map(lambda x: x**3, range(4))
[0, 1, 8, 27]
>>>

·

·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 37

Язык программирования http://localhost:8000/#1

37 of 40 17.03.2014 01:14

List comprehension (1/2)
List comprehension — способ задания последовательности

[выражение for переменная in послед.]
[выражение for переменная in послед. if условие]
В зависимости от скобок генерируются разные типы данных
кортеж:

(выражение for переменная in послед.)
множество:

{выражение for переменная in послед.}
словарь:

{ выражение-ключ : выражение-значение for переменная in посл. }
Удобно использовать для inline-создания
последовательностей

·
·
·

·
·

·
·

·
·

·
·

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 38

Язык программирования http://localhost:8000/#1

38 of 40 17.03.2014 01:14

List comprehension (2/2)
>>> # квадраты чисел от 0 до 9
... [x**2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> # квадраты четных чисел от 0 до 9:
... [x**2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
>>> # кортеж
... (x**2 for x in range(10))
(0, 1, 4, 9, 16, 25, 36, 49, 64, 81)
>>> # словарь
... { "K" + str(i): i**2 for i in range(6)}
{'K0': 0, 'K1': 1, 'K2': 4, 'K3': 9, 'K4': 16, 'K5': 25, 'K6': 36}
>>>

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 39

Язык программирования http://localhost:8000/#1

39 of 40 17.03.2014 01:14

Практика

01.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 40

Язык программирования http://localhost:8000/#1

40 of 40 17.03.2014 01:14

