
Язык программирования

Лекция№ 3
Владимир Владимирович Руцкийrutsky.vladimir@gmail.com

Язык программирования http://localhost:8000/#1

1 of 22 17.03.2014 01:15

План занятия
Строки, ввод/вывод, механизм исключений

Практика

·
·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 2

Язык программирования http://localhost:8000/#1

2 of 22 17.03.2014 01:15

Строки. Повторение (1/2)
Строки — последовательности:

>>> a = "Test!"
>>> a[1]
'e'
>>> [ch for ch in a]
['T', 'e', 's', 't', '!']
>>> b = "0123456789"
>>> b[2:4]
'23'
>>> b[::-1]
'9876543210'
>>> b[::2]
'02468'

Строки — неизменяемые:
>>> "test"[1] = "a"
Traceback (most recent call last):
 File "/usr/lib/python3.3/doctest.py", line 1287, in __run
 compileflags, 1), test.globs)
 File "<doctest str_immutable.pycon[1]>", line 1, in <module>
 s[3] = 'a'
TypeError: 'str' object does not support item assignment

·

·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 3

Язык программирования http://localhost:8000/#1

3 of 22 17.03.2014 01:15

Строки. Повторение (2/2)
Различные способы задания:

>>> 'doesn\'t'
"doesn't"
>>> "doesn't"
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'
>>> "first word \
... second word"
'first word second word'
>>> print("first line\n secondline")
first line
 secondline
>>> r"line with \n in middle"
'line with \\n in middle'
>>> """Multiline with ' or "
... Yes.
... """
'Multiline with \' or "\nYes.\n'
>>>

·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 4

Язык программирования http://localhost:8000/#1

4 of 22 17.03.2014 01:15

Символы и кодировки
На экране монитора, бумаге, табличках изображаются символы
символ: «маленькая кириллическая буква А»
изображение: «а»,

Для хранения символа в памяти компьютера, ему необходимо сопоставить
численное представление — закодировать символ
Для кодирования используются различные кодировки

Ранее были распространены однобайтовые кодировки: один символ — один
байт
Для кириллицы часто использовались cp1251, koi8-r, MacCyrillic
Символ: «маленькая кириллическая буква А»: cp1251 — 0xE0, koi8-r — 0xC1,
MacCyrillic — 0xE0.

Однобайтные кодировки — ужасны
не могут хранить все символы, необходимо переключаться между кодировками
для разных языков

для файла нужно знать его кодировку, иначе — «кракозябры» (кодировок очень
много)

·
·
·

·
·
·

·
·

·
·

·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 5

Язык программирования http://localhost:8000/#1

5 of 22 17.03.2014 01:15

Unicode
Unicode — стандарт описывающий все символы всех языков (+ иконки,
модификаторы и т.п.)
Каждому символу ставится в соответствие кодовая позиция Unicode

«маленькая кириллическая буква А» — U+0430
Для хранения кодовых позиций Unicode в памяти компьютера позиции
кодируются

Есть ряд кодировок хранения кодовых позиций Unicode в памяти (Unicode
Transformation Format):

UTF-8 — каждый символ кодируется последовательностью от 1 до 6 байт
UTF-16 — каждый символ кодируется последовательностью 2 или 4 байта
UTF-32 — каждый символ кодируется 4 байтами, числом — кодовой позицией

код символа «маленькая кириллическая буква А» (U+0430)
в UTF-8: 0xd0 0xb0,
в UTF-16 0x30 0x04,
в UTF-32 0x30 0x04 0x00 0x00

·
·

·
·
·

·
·
·

·
·
·
·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 6

Язык программирования http://localhost:8000/#1

6 of 22 17.03.2014 01:15

Unicode в Python
Строки в Python — это Unicode строки
конкретный формат представления в памяти зависит от платформы и настроек
компиляции Python

По умолчанию исходный код файлов считается в UTF-8
Это можно изменить, добавив первой строкой комментарий с кодировкой,
например:
coding: cp1251

>>> # В строках можно задавать кодовые позиции Unicode
... print("\u0430 \U00000431 \N{GREEK CAPITAL LETTER DELTA}")
а б Δ

>>> # Получить позицию Unicode:
... ord("г")
1075
>>> # Сконструировать Unicode символ по позиции:
... chr(1075)
'г'
>>> # В строках можно задавать однобайтовые ASCII-коды
... "\x30\x31\x32"
'012'
>>>

·
·

·
·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 7

Язык программирования http://localhost:8000/#1

7 of 22 17.03.2014 01:15

Байтовые последовательности
>>> # Для хранения последовательностей байт используется тип bytes
... b = b'some bytes \xff'
>>> type(b)
<class 'bytes'>
>>> # Задаются также, как строки, но с префиксом 'b'. Можно задать
... # произвольные байты через '\x..', ASCII символы можно задавать как есть
... b'''\x00\x01 ABC
... def'''
b'\x00\x01 ABC\ndef'
>>> # Элементами bytes являются значения байтов (0--255)
... # Индексация такая же, как в других последовательностях (строках, списках)
... b[0]
115
>>> b[-1]
255
>>> # Строки можно кодировать в набор байт:
... "abc абв".encode('utf-8')
b'abc \xd0\xb0\xd0\xb1\xd0\xb2'
>>> "abc абв".encode('cp1251')
b'abc \xe0\xe1\xe2'
>>> # и обратно
... b'abc \xe0\xe1\xe2'.decode('cp1251')
'abc абв'
>>> b'abc \xe0\xe1\xe2'.decode('utf-8')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe0 in position 4: invalid continuation byte
>>> # bytes неизменяемый

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 8

Язык программирования http://localhost:8000/#1

8 of 22 17.03.2014 01:15

Работа со строками (1/2)
>>> s = "теСТОвая СТРОка"
>>> s = s.capitalize(); s # Сделать первую букву заглавной, остальные маленькими
'Тестовая строка'
>>> s.count('ст') # число неперекрывающихся вхождений подстроки
2
>>> s.endswith('ока') # проверить, кончается ли строка на другую строку (см. startswith())
True
>>> '01\t012\t0123\t01234'.expandtabs(4)
'01 012 0123 01234'
>>> s.find('строка') # найти первое вхождение подстроки (-1, если не найдена)
9
>>> s.find('о', 9, 15) # найти первое вхождение, начиная с 9 позиции по 15
12
>>> s.index('ОКА') # то же, что find, но бросает исключение, если не найдена
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: substring not found
>>> # Также есть rfind() и rindex().
... # Есть методы isalnum(), isalpha(), isdecimal(), isdigit(), islower(), isnumeric()
... # isspace(), isupper() для проверки типа символов
... '123'.isdigit()
True
>>> '12d4'.isdigit()
False
>>> s.split('а') # разбивает строку на список строк разделителем
['Тестов', 'я строк', '']
>>> s.split() # по умолчанию разделитель — пробельные символы
['Тестовая', 'строка']
>>> '<->'.join(map(str, range(10))) # склеивает строки последовательности разделителем
'0<->1<->2<->3<->4<->5<->6<->7<->8<->9'
>>>

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 9

Язык программирования http://localhost:8000/#1

9 of 22 17.03.2014 01:15

Работа со строками (2/2)
>>> s = 'Тестовая строка'
>>> s.lower(), s.upper() # привести к нижнему/верхнему регистру
('тестовая строка', 'ТЕСТОВАЯ СТРОКА')
>>> s.partition('ая') # разделить на три части: до разделителя, разделитель, после разд.
('Тестов', 'ая', ' строка')
>>> s.replace('т', '(т)') # заменить подстроку
'Тес(т)овая с(т)рока'
>>> s.center(80) # выровнить символом по центру (заполнитель по умолчанию: пробел)
' Тестовая строка '
>>> s.rjust(80, '.') # выровнить по правому краю, ljust() — по левому
'...Тестовая строка'
>>> ' test '.strip() # удалить пробельные символы
'test'
>>> # Подробнее: http://docs.python.org/3/library/stdtypes.html#textseq
... pass
>>>

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 10

Язык программирования http://localhost:8000/#1

10 of 22 17.03.2014 01:15

Ввод/вывод в Python
>>> import io
>>> # open() открывает файл и возвращает "файл-подобный" объект
... f = open("test.txt", "w") # "w" - создать файл для записи
>>> f.write("Те") # записать в file-подобный объект
2
>>> f.write("ст!\n")
4
>>> # print() имеет аргумент, позволяющий указать файл-подобный объект для записи:
... print("1 2 3", file=f)
>>> f.close() # закрыть файл
>>> f = open("test.txt") # "r" - открыть для чтения, по умолчанию "r"
>>> f.read(3) # прочитать 3 символа из файла
'Тес'
>>> f.readline() # прочитать одну строку из файла
'т!\n'
>>> f.tell() # текущая позиция в файле
10
>>> f.seek(2, io.SEEK_SET) # переместиться в позицию в файле
2
>>> f.readline()
'ест!\n'
>>> f.read() # прочитать до конца файла
'1 2 3\n'
>>> f.close()
>>> f = open("test.txt", "rb") # "b" — открыть в двоичном режиме ("t" для текстового)
>>> f.readline()
b'\xd0\xa2\xd0\xb5\xd1\x81\xd1\x82!\n'
>>> f.close()
>>> # Можно указать кодировку при чтении/записи в текстовом режиме
... f = open("test.txt", encoding="cp1251")
>>> f.read()
'РўРµСЃС‚!\n1 2 3\n'
>>>

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 11

Язык программирования http://localhost:8000/#1

11 of 22 17.03.2014 01:15

Стандартные потоки
ввода/вывода
>>> # В Python по умолчанию есть два файловых потока для ввода с консоли и
... # для вывода в консоль
... import sys
>>> sys.stdout.write("Это вывод\n")
Это вывод
10
>>> t = sys.stdin.read(4)
Это ввод
>>> t
'Это '
>>> sys.stdin.read(4)
'ввод'
>>>

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 12

Язык программирования http://localhost:8000/#1

12 of 22 17.03.2014 01:15

Типы ошибок
Синтаксические ошибки — возникают при загрузке модуля (разборе очередной
строки в интерактивном режиме)
>>> while True print("test")
 File "<stdin>", line 1
 while True print("test")
 ^
SyntaxError: invalid syntax
>>>

Фатальные ошибки внутри интерпретатора Python или библиотек

Crash. «Программа совершила недопустимую операцию и будет закрыта»
Ошибки времени выполнения — исключительные ситуации
>>> def div(a, b):
... return a / b
...
>>> div(1, 0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in div
ZeroDivisionError: division by zero
>>>

·

·

·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 13

Язык программирования http://localhost:8000/#1

13 of 22 17.03.2014 01:15

Исключительные ситуации
Популярный механизм обработки ошибок

Деление на ноль, закончилась память, не удалось
открыть файл и др. — исключительные ситуации
Все исключения имеют:
тип — класс исключения,
объект-исключение — может хранить дополнительную
информацию

Для обработки исключений используется конструкция:
try:
 # БЛОК-КОДА
 ...
except ...: # ОПИСАНИЕ ТИПА ИСКЛЮЧЕНИЯ
 # БЛОК-ОБРАБОТЧИКА-ИСКЛЮЧЕНИЯ
 ...

·
·

·
·
·

·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 14

Язык программирования http://localhost:8000/#1

14 of 22 17.03.2014 01:15

Обработка исключительных ситуаций
блок кода 1
try:
 ... # блок кода 2
except ExceptionType1:
 ... # блок обработки исключения ExceptionType1
except ExceptionType2:
 ... # блок обработки исключения ExceptionType2
Продолжение блока кода 1

Если в блоке кода 2 происходит необработанная исключительная ситуация, то:
создаётся объект-исключение (класс + данные), назовём его exc

блок кода 2 прерывается в месте, где произошло исключение

среди конструкций except последовательно ищется блок с подходящим типом
исключения (по типу исключения)
если обработчик найден, то выполняется его блок, затем упраление передаётся в
продолжение блока кода 1
если обоработчик не найдён, то исключение не обработано и произойдёт переход
к внешнему try-except обработчику исключений (если его нет, то программа
завершится с ошибкой)

·
·
·

·

·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 15

Язык программирования http://localhost:8000/#1

15 of 22 17.03.2014 01:15

Пример
>>> int('123')
123
>>> int('trash')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'trash'
>>>
while True:
 s = input("Please enter a number: ")
 try:
 x = int(s)
 break # остановить цикл
 except ValueError:
 print("Can't parse '{0}' as number.".format(s))
 print("Try again")
print("You entered:", x)

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 16

Язык программирования http://localhost:8000/#1

16 of 22 17.03.2014 01:15

Конструкция try-except
import sys
try:
 # <Блок кода>
 f = open('myfile.txt')
 s = f.readline()
 v = float(s.strip())
 r1 = 1 / int(v)
 r2 = v**v

<ТипИсключения> as <Объект-Исключение>
except IOError as exc:
 errno, strerror = exc.args
 print("I/O error({0}): {1}".format(errno, strerror))
except ValueError:
 print("Could not convert data to an numer type.")
Обработчик для нескольких исключений
except (ZeroDivisionError, OverflowError):
 print("Floating point operation exception.")
Обработчик для всех типов исключений
except:
 # В sys можно найти всю информацию об исключении, включая
 # стек вызовов.
 print("Unexpected error:", sys.exc_info()[0])
 raise # Оставляем текущее исключение необработанным --- произойдёт поиск
 # обработчика в следующем вложенном try: ... except: ...
Блок, который выполняется если не произошло никакого (непойманного в
<блоке кода>) исключения.
else:
 print("No exceptions!")

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 17

Язык программирования http://localhost:8000/#1

17 of 22 17.03.2014 01:15

Иерархия исключений
исключения образуют иерархию
по типам

Обработчик с типом T подходит
для исключения с типом
type(exc), если
type(exc) == T, или
type(exc) наследуется от T

Или просто:
if isinstance(exc, T):
 ...

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- ArithmeticError
 | +-- FloatingPointError
 | +-- OverflowError
 | +-- ZeroDivisionError
 +-- AssertionError
 +-- AttributeError
 +-- BufferError
 +-- EOFError
 +-- ImportError
 +-- LookupError
 | +-- IndexError
 | +-- KeyError
 +-- MemoryError
 +-- NameError
 | +-- UnboundLocalError
 +-- OSError
 ...

·
·

·
·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 18

Язык программирования http://localhost:8000/#1

18 of 22 17.03.2014 01:15

Порождение исключений
Вызвать (породить, бросить) исключениеможно явно:
raise some_object

Пример:
>>> try:
... # Бросаем исключение стандартного типа (можно любого своего).
... raise Exception('spam', 'eggs')
... except Exception as inst:
... print(type(inst)) # объект-исключение
... print(inst.args) # Класс Exception для удобства сохраняет свои

... # аргументы в .args

... print(inst)

...
<class 'Exception'>
('spam', 'eggs')
('spam', 'eggs')
>>>

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 19

Язык программирования http://localhost:8000/#1

19 of 22 17.03.2014 01:15

Конструкция try-finally
Есть синтаксис для гарантированного выполнения кода:
try:
 ... # блок кода 1
except SomeExcType:
 ... # блок кода except
finally:
 ... # блок кода finally
... # продолжение блока кода

Если

блок кода 1 не бросил исключения

блок кода 1 бросил исключение, но оно было обработано в except

то перед выполнением продолжения блока кода выполнится блок кода finally
Если

блок кода 1 бросил исключение и оно не было поймано в except

блок кода 1 бросил исключение, оно было поймано except, но внутри
блока кода except произошло непойманное исключение

то перед переходу к внешнему обработчику исключений выполнится блок кода
finally

·
·
·

·
·
·

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 20

Язык программирования http://localhost:8000/#1

20 of 22 17.03.2014 01:15

Пример finally
f = open("test.txt")
try:
 ... # обработка содержимого файла
finally:
 f.close() # выполнится всегда после завершения блока try
try:
 main()
finally:
 print("Good bye!")

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 21

Язык программирования http://localhost:8000/#1

21 of 22 17.03.2014 01:15

Практика

08.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 22

Язык программирования http://localhost:8000/#1

22 of 22 17.03.2014 01:15

