
Язык программирования

Лекция№ 5
Владимир Владимирович Руцкийrutsky.vladimir@gmail.com

Язык программирования http://localhost:8000/#1

1 of 25 23.03.2014 00:17

План занятия
Принципы объектно-ориентированного
программирования (ООП)
Классы в Python
Практика

·

·
·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 2

Язык программирования http://localhost:8000/#1

2 of 25 23.03.2014 00:17

Объектно ориентированное
программирование (ООП)
ООП — парадигма программирования — совокупность
идей и понятий, определяющих стиль написания
программ

Примеры других парадигм программирования:
структурное программирование, функциональное
программирование.
См. https://ru.wikipedia.org
/wiki/Парадигма_программирования
Основные понятия ООП: объект, класс, абстракция,
наследование, инкапсуляция, полиморфизм

·

·

·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 3

Язык программирования http://localhost:8000/#1

3 of 25 23.03.2014 00:17

Объект. Состояние. Интерфейс
Объект — сущность, обладающая определённым
состоянием, поведением и свойствами
Объект «автомобиль с номером aa030a» (конкретный)
Внешний интерфейс (доступен всем пользователям):
свойства (атрибуты): «цвет», «марка», «мощность
двигателя», «количество мест»
поведение (функции, методы): «завестись», «ехать»,
«повернуть», «включить фары»

Внутреннее состояние (доступно только объекту):
«заведена», «включены фары», «положение роторов»,
«напряжение на контурах»

·
·
·

·

·

·
·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 4

Язык программирования http://localhost:8000/#1

4 of 25 23.03.2014 00:17

Внешний интерфейс
Объект «водитель Пётр» взаимодействует с объектом
«автомобиль аа030а» посредством внешнего
интерфейса

Пётр нажимает педали, крутит руль, получает
информацию о цвете и марке автомобиля

·

·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 5

Язык программирования http://localhost:8000/#1

5 of 25 23.03.2014 00:17

Внутреннее состояние
Внешний объект «Пётр» не должен непосредственно
взаимодействовать с внутренним состоянием
объекта «автомобиль аа030а»

«Пётр» не должен соединять контакты электросистемы
объекта «автомобиля», не должен двигать роторы
двигателя и т.п.
Механизм изменения внутреннего состояния может быть
различным у разных объектов-автомобилей
Прямое изменение внутреннего состояния внешними
объектами скорее всего приведёт к поломке системы
(объекта «автомобиль аа030а»)
Говорят, что объект инкапсулирует свои внутренние
свойства — скрывает своё внутреннее состояние

·

·

·

·

·
22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 6

Язык программирования http://localhost:8000/#1

6 of 25 23.03.2014 00:17

Преимущества объектов
Объекты состоят из внешнего интерфейса и
внутренней реализации
Взаимодействие с объектом — только через внешний
интерфейс

Обеспечивает гибкость — возможность свободного
изменения внутренней реализации без боязни что-то
сломать

У всех объектов «автомобилей» единый интерфейс
управления (с функциями «поверни руль», «включи
дальний свет» и т.п.), но разная внутренняя реализация
Обеспечивает консистентность (согласованность) —
объект сам меняет своё внутреннее состояние и
обеспечивает его корректность

·

·
·

·

·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 7

Язык программирования http://localhost:8000/#1

7 of 25 23.03.2014 00:17

Классы
Класс — совокупность объектов (экземпляров класса),
объединённых общими свойствами и поведением
Класс «Автомобили» — совокупность объектов, имеющих
поведения: «завестись», «ехать», «повернуть»
свойства: «марка», «цвет», «макс. скорость», «количество мест»«мощность двигателя»
Класс «Велосипеды»:
поведение: «ехать», «повернуть», «подпрыгнуть»
свойства: «марка», «цвет», «макс. скорость», «материал рамы»
Класс «Транспортные средства»:
поведения: «ехать», «повернуть»
свойства: «марка», «цвет», «макс. скорость»

·
·

·
·

·
·
·

·
·
·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 8

Язык программирования http://localhost:8000/#1

8 of 25 23.03.2014 00:17

Наследование классов
Класс «Транспортные средства» содержит в себе классы«Автомобили» и «Велосипеды»
каждый экземпляр класса «Автомобили» и класса «Велосипеды»
является экземпляром класса «Транспортные средства»
Классы «Автомобили» и «Велосипеды» наследуют
свойства и поведение класса «Транспортные средства»
Все «транспортные средства» имеют метод «ехать» и свойство«цвет»
Говорят, что

«Автомобили» и «Велосипеды» — дочерние (или производные)
классы для класса «Транспортные средства»
класс «Транспортные средства» — родительский (или
базовый) для классов «Автомобили» и «Велосипеды»

·
·

·
·

·
·
·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 9

Язык программирования http://localhost:8000/#1

9 of 25 23.03.2014 00:17

Абстракция
Абстрагирование — выделение значимых свойств,
опуская незначимые

Классы — абстракции
«Транспортное средство» — абстракция
Для «транспортных средств» важны только «цвет», «макс.
скорость» и возможность «ехать», «повернуть»

«Автомобиль» — тоже абстракция
Для «автомобилей» важно, что они имеют двигатель
определённой «мощности» (в отличие от «велосипеда»)

·

·
·

·

·
·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 10

Язык программирования http://localhost:8000/#1

10 of 25 23.03.2014 00:17

Полиморфизм
При наследовании реализация метода может быть
изменена — полиморфизм
Рассмотрим класс «Автомобиль Лада Калина»
Создадим производный от класса «Автомобиль Лада
Калина» класс «Автомобиль Лада Калина с двигателем от
Ford», в котором изменим внутреннюю реализацию
методов «завестись» и «поехать» для двигателя от Ford
Новые автомобили, экземпляры «Автомобиль Лада
Калина с двигателем от Ford», поддерживают интерфейс
класса «Автомобиль Лада Калина», но имеют
изменённую (полиморфную) реализацию

·
·
·

·

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 11

Язык программирования http://localhost:8000/#1

11 of 25 23.03.2014 00:17

Классы в Python
>>> # Класс определяется с помощью конструкции `class':
... # class ИмяКласса:
... # выражение1
... # выражение2
... # ...
... class MyClass:
... def f(self):
... return 'Hello!'
...
>>> MyClass # Оператор class создал новый класс
<class '__main__.MyClass'>
>>> x = MyClass() # `вызов' класса — создание экземпляра класса
>>> x # - экземпляр (instance) класса MyClass (конкретный объект)
<__main__.MyClass object at 0x...>
>>> # атрибуты и методы экземпляра доступны через точку
... x.f() # вызываем метод класса
'Hello!'
>>> y = MyClass() # создадим ещё один экземпляр класса
>>> y.f()
'Hello!'
>>>22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 12

Язык программирования http://localhost:8000/#1

12 of 25 23.03.2014 00:17

Методы
>>> class MyClass:
... # Все методы класса принимают первым аргументом экземпляр класса `self'
... # (можно назвать по-другому, но принято `self')
... def f(self):
... return "I'm {0}.".format(id(self))
... def greet_user(self, name):
... # Методы — обычные функции с первым аргументом-объектом
... print("Hello {0}!".format(name))
...
>>> x = MyClass() # создадим экземпляр класса
>>> id(x)
140454803317072
>>> x.f() # вызываем метод класса
"I'm 140454803317072."
>>> y = MyClass() # создадим ещё один экземпляр класса
>>> id(y)
140454803318096
>>> y.f()
"I'm 140454803318096."
>>> x.greet_user("John")
Hello John!
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 13

Язык программирования http://localhost:8000/#1

13 of 25 23.03.2014 00:17

Атрибуты (1/2)
>>> class MyClass:
... def set_name(self, new_name):
... # Объектам можно добавлять/удалять/изменять атрибуты
... self.name = new_name # установка значения атрибута `name'
... def greet_user(self):
... print("Hello, {0}!".format(self.name))
...
>>> x = MyClass()
>>> # атрибуты и методы экземпляра доступны через точку
... x.abc = 'test' # Добавление (или изменение значения) атрибута `abc'
>>> x.abc # получение значения атрибута
'test'
>>> x.ttt # атрибуты должны быть установлены перед использованием
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute 'ttt'
>>> x.set_name("Valery")
>>> x.greet_user()
Hello, Valery!
>>> x.name
'Valery'
>>> x.name = 'John'
>>> x.greet_user()
Hello, John!
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 14

Язык программирования http://localhost:8000/#1

14 of 25 23.03.2014 00:17

Атрибуты (2/2)
>>> class MyClass:
... def set_name(self, new_name):
... # Объектам можно добавлять/удалять/изменять атрибуты
... self.name = new_name # установка значения атрибута `name'
... def greet_user(self):
... print("Hello, {0}!".format(self.name))
...
>>> x = MyClass()
>>> y = MyClass()
>>> # У каждого класса свой набор атрибутов
>>> x.set_name('X')
>>> y.set_name('Y')
>>> x.greet_user()
Hello, X!
>>> y.greet_user()
Hello, Y!
>>> x.test = 'test'
>>> y.test
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute 'test'
>>> # Атрибуты классов хранятся в специальном атрибуте-словаре __dict__
... x.__dict__
{'test': 'test', 'name': 'X'}
>>> y.__dict__
{'name': 'Y'}
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 15

Язык программирования http://localhost:8000/#1

15 of 25 23.03.2014 00:17

Конструктор
>>> class User:
... """Класс пользователя (это docstring, необязательный)"""
... def __init__(self, name):
... # Конструктор класса — этот метод вызывается при инициализации
... # вновь созданного экземпляра класса.
... # Первый аргумент `self' — экземпляр класса (кого инициализируем)
... # Остальные аргументы — те, которые передали при создании экземпляра
... self.my_name = name # — записываем в атрибут экземпляра класса с
... # именем `my_name' значение переменной `name'
... def hello(self):
... # С помощью self.my_name получаем значение имени для данного
... # экземпляра
... return "Hello, my name is {0}!".format(self.my_name)
...
>>> # Создаём экземпляр класса (в конструктор передаётся name="Peter")
... user_instance = User("Peter")
>>> user_instance.my_name
'Peter'
>>> user_instance.hello()
'Hello, my name is Peter!'
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 16

Язык программирования http://localhost:8000/#1

16 of 25 23.03.2014 00:17

Перегрузка
>>> class OverloadsTest:
... # Перегрузок в Python нет, вторая функция f() заменит первую f()
... def f(self, a, b, c):
... print("F1")
... def f(self, a):
... print("F2")
>>> o = OverloadsTest()
>>> o.f(1)
F2
>>> o.f(1, 2, 3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: f() takes 2 positional arguments but 4 were given
>>> # Для перегрузок нужно использовать переменное количество аргументов и
... # проверку типов
... class MyRange:
... def __init__(self, start, stop=None, step=1):
... self.numbers = []
... if stop is None:
... start, stop = 0, start
... i = start
... while i < stop:
... self.numbers.append(i)
... i += step
...
>>> MyRange(10).numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> MyRange(2, 7).numbers
[2, 3, 4, 5, 6]
>>> MyRange(2, 10, 2).numbers
[2, 4, 6, 8]
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 17

Язык программирования http://localhost:8000/#1

17 of 25 23.03.2014 00:17

Статические переменные
>>> class User:
... # Объявления в классе являются статическими, т.е. общими для всех
... # экземпляров класса.
... greeting = "Hello " # статический член
... def __init__(self, name):
... self.my_name = name
... def hello(self):
... # Также к `greeting' можно обратиться как `User.greeting'
... return self.greeting + self.my_name
...
>>> peter = User("Peter")
>>> sam = User("Sam")
>>> peter.hello()
'Hello Peter'
>>> sam.hello()
'Hello Sam'
>>> # Изменим статический член User.greeting
... User.greeting = "Hi "
>>> peter.hello()
'Hi Peter'
>>> sam.hello()
'Hi Sam'
>>> def new_hello(self):
... return "New hello() called with greeting `" + self.greeting + \
... "' and name `" + self.my_name + "'"
...
>>> # Изменим статический член класса функцию hello():
... User.hello = new_hello
>>> peter.hello()
"New hello() called with greeting `Hi ' and name `Peter'"
>>> sam.hello()
"New hello() called with greeting `Hi ' and name `Sam'"
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 18

Язык программирования http://localhost:8000/#1

18 of 25 23.03.2014 00:17

Приватные атрибуты и методы
>>> class User:
... # Приватные (скрытые, внутренние) атрибуты и методы принято именовать
... # начиная с одного подчеркивания
... _greeting = "Hello "
... def __init__(self, name, surname):
... self._name = name
... # Имена внутри классов, начинающиеся с двух подчеркиваний, и
... # заканчивающиеся не более, чем одним подчеркиванием, прозрачно
... # "переименовываются" (name mangling): к ним добавляется имя класса
... self.__surname = surname
... def _get_full_name(self): # приватный метод
... return self._name + " " + self.__surname
... def hello(self):
... return self._greeting + self._get_full_name()
...
>>> user_instance = User("Peter", "Smith")
>>> user_instance.hello()
'Hello Peter Smith'
>>> user_instance._name # обращаться к приватным атрибутам плохо!
'Peter'
>>> user_instance.__surname
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'User' object has no attribute '__surname'
>>> user_instance.__dict__
{'_name': 'Peter', '_User__surname': 'Smith'}
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 19

Язык программирования http://localhost:8000/#1

19 of 25 23.03.2014 00:17

Наследование
>>> class User:
... greeting = "Hello "
... def __init__(self, name):
... self.my_name = name
... def hello(self):
... return "Hello, my name is {0}!".format(self.my_name)
...
>>> # В Python есть множественное наследование классов:
... # class ИмяКласса(ИмяБазовогоКласса1, ИмяБазовогоКласса2, ...):
... # выражение1
... # выражение2
... # ...
... class UserWithSurname(User): # Наследуем свойства класса User
... def __init__(self, name, surname):
... # Вызываем конструктор базового класса с необходимыми
... # аргументами (он присвоит в self.my_name=name)
... super(UserWithSurname, self).__init__(name)
... self.my_surname = surname
... def hello(self): # hello() переопределяется (полиморфизм)
... return self.greeting + self.my_name + " " + self.my_surname
... def old_hello(self):
... # Явно вызываем метод базового класса
... return super(UserWithSurname, self).hello()
...
>>> peter = UserWithSurname("Peter", "Ivanov")
>>> peter.hello()
'Hello Peter Ivanov'
>>> peter.old_hello()
'Hello, my name is Peter!'
>>> # Замечание: поддерживается «ромбовидное» наследование

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 20

Язык программирования http://localhost:8000/#1

20 of 25 23.03.2014 00:17

Функции isinstance(),
issubclass()
>>> class Base:
... pass
...
>>> class Derived(Base):
... pass
...
>>> b = Base()
>>> d = Derived()
>>> # isinstance() проверяет, является ли объект экземпляром класса
... isinstance(b, Base)
True
>>> isinstance(b, Derived)
False
>>> isinstance(d, Base)
True
>>> isinstance(d, Derived)
True
>>> # issubclass() проверяет, является класс подклассом другого класса
... issubclass(Derived, Base)
True
>>> issubclass(Base, Derived)
False
>>> issubclass(Derived, Derived)
True
>>> issubclass(Base, Base)
True
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 21

Язык программирования http://localhost:8000/#1

21 of 25 23.03.2014 00:17

Специальные методы (1/3)
>>> class Vector:
... def __init__(self, x, y):
... self._x = x
... self._y = y
... def __str__(self):
... # Вызывается при конструировании строки (str) от объекта
... # (строковой вид объекта произвольного формата)
... return "({0}, {1})".format(self._x, self._y)
... def __repr__(self):
... # Вызывается при выводе объектов на экран в интерпретаторе
... # (строковой вид объекта произвольного формата, обычно строка
... # как этот объект можно создать)
... return "Vector({0}, {1})".format(self._x, self._y)
... def __call__(self, *args, **kwargs):
... # Вызывается при "вызове" объекта (obj=Vector(); obj(...))
... print("Called with {0} {1}".format(str(args), str(kwargs)))
...
>>> v = Vector(2, 3)
>>> str(v)
'(2, 3)'
>>> v
Vector(2, 3)
>>> v(1, 2, test="data")
Called with (1, 2) {'test': 'data'}
>>>

Подробно: http://docs.python.org/3/reference/datamodel.html

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 22

Язык программирования http://localhost:8000/#1

22 of 25 23.03.2014 00:17

Специальные методы (2/3)
>>> import numbers # в numbers определены классы чисел
>>> class Vector:
... def __init__(self, x, y):
... self._x = x
... self._y = y
... def __repr__(self):
... return "Vector({0}, {1})".format(self._x, self._y)
... def __add__(self, v):
... # Вызывается при попытке сложить данный объект с чем-то (obj + v)
... # Возвращаемой значение из функции — результат (obj + v)
... assert isinstance(v, Vector) # если сложить не с вектором — ошибка
... return Vector(self._x + v._x, self._y + v._y)
... def __sub__(self, v): # (obj - v)
... assert isinstance(v, Vector)
... return Vector(self._x - v._x, self._y - v._y)
... def __mul__(self, scalar): # (obj * scalar)
... assert isinstance(scalar, numbers.Number) # умножаем только на числа
... return Vector(self._x * scalar, self._y * scalar)
... def __rmul__(self, scalar): # (scalar * obj)
... assert isinstance(scalar, numbers.Number)
... return self * scalar
... # Можно определить операции для +, -, *, /, //, %, divmod(), pow(), **, <<, >>, &, ^, |
...
>>> v1 = Vector(1, 2)
>>> v2 = v1 + Vector(3, -1); v2
Vector(4, 1)
>>> v2 * -2
Vector(-8, -2)
>>> 0.5 * v2
Vector(2.0, 0.5)
>>> v2 += Vector(1, 0); v2 # с помощью __iadd__ можно задать +=, здесь — автоматически
Vector(5, 1)
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 23

Язык программирования http://localhost:8000/#1

23 of 25 23.03.2014 00:17

Специальные методы (3/3)
>>> import numbers # в numbers определены классы чисел
>>> class Vector:
... def __init__(self, x, y):
... self._x = x
... self._y = y
... def __getattr__(self, name):
... # Вызывается, когда происходит получение атрибута (t = obj.name)
... # (name — имя запрошенного атрибута) и name не найден в обычных местах
... if name == 'x':
... return self._x
... elif name == 'y':
... return self._y
... elif name == 'length':
... return (self._x ** 2 + self._y ** 2) ** 0.5
... else:
... raise AttributeError()
... def __setattr__(self, name, value):
... # Вызывается, когда происходит присвоение атрибута (obj.key = t)
... # (name — имя запрошенного атрибута) и name не найден в обычных местах
... if name in ['x', 'y']:
... assert isinstance(value, numbers.Number)
... super(Vector, self).__setattr__(name, value)
...
>>> v = Vector(3, 4); v.x
3
>>> v.y = 'test'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in __setattr__
AssertionError
>>> v.length
5.0
>>>

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 24

Язык программирования http://localhost:8000/#1

24 of 25 23.03.2014 00:17

Практика

22.03.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 25

Язык программирования http://localhost:8000/#1

25 of 25 23.03.2014 00:17

