
Язык программирования

Лекция№ 6
Владимир Владимирович Руцкийrutsky.vladimir@gmail.com

Язык программирования http://localhost:8000/slides/

1 of 24 05.04.2014 15:26

План занятия
Классы в Python. Повторение
Итераторы

Генераторы

Декораторы

Практика

·
·
·
·
·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 2

Язык программирования http://localhost:8000/slides/

2 of 24 05.04.2014 15:26

Классы в Python. Повторение

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 3

Язык программирования http://localhost:8000/slides/

3 of 24 05.04.2014 15:26

Итераторы
Существует много различных контейнеров (list, tuple,
str, bytes, array)
Частая операция: пройтись по всем элементам
контейнера и сделать что-то с каждым элементом
Для унификации доступа придуман итератор — объект,
абстрагирующий последовательный доступ к элементам
контейнера

Контейнер предоставляет метод "создать_объект-
итератор()"
Объект-итератор имеет метод
"получить_следующий_элемент()"

·

·

·

·

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 4

Язык программирования http://localhost:8000/slides/

4 of 24 05.04.2014 15:26

Итераторы в Python
В Python метод __iter__() у контейнеров возвращает
объект-итератор
Итератор имеет метод __next__() для получения
следующего значения из контейнера

Если значений больше нет, __next__() бросает
исключение StopIteration

·

·

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 5

Язык программирования http://localhost:8000/slides/

5 of 24 05.04.2014 15:26

Итераторы в Python. Пример
>>> a = ['A', 'B', 'C']
>>> a.__iter__
<method-wrapper '__iter__' of list object at 0x...>
>>> it = a.__iter__()
>>> it.__next__()
'A'
>>> it.__next__()
'B'
>>> it.__next__()
'C'
>>> it.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 6

Язык программирования http://localhost:8000/slides/

6 of 24 05.04.2014 15:26

Цикл for
Цикл for работает используя итераторы:
for ELEM in CONTAINER:
 PROCESS(ELEM)

эквивалентно:
it = CONTAINER.__iter__()
while True:
 try:
 ELEM = it.__next__()
 except StopIteration:
 break
 PROCESS(ELEM)
Замечание: for также поддерживает протокол
последовательности (sequence protocol)

·

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 7

Язык программирования http://localhost:8000/slides/

7 of 24 05.04.2014 15:26

Написание итераторов
>>> class MyRange:
... def __init__(self, stop):
... self._stop = stop
... self._next = 0
... def __iter__(self):
... return self
... def __next__(self):
... if self._next >= self._stop:
... raise StopIteration
... else:
... result, self._next = self._next, self._next + 1
... return result
...
>>> for i in MyRange(10):
... print(i, end=" ")
...
0 1 2 3 4 5 6 7 8 9
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 8

Язык программирования http://localhost:8000/slides/

8 of 24 05.04.2014 15:26

Передача последовательностей
Большинство функций работает с контейнерами через
итераторы:
>>> list(MyRange(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(zip(MyRange(3), MyRange(5)))
[(0, 0), (1, 1), (2, 2)]

Интерфейс итератора скрывает детали того, как
именно итерироваться (проходить) по элементам
Многие функции возвращают объекты поддерживающие
интерфейс итераторов:
>>> res = zip(range(10), ['A', 'B'])
>>> it = res.__iter__()
>>> it.__next__()
(0, 'A')
>>>

·

·

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 9

Язык программирования http://localhost:8000/slides/

9 of 24 05.04.2014 15:26

__iter__() у итераторов
Замечание: итераторы также имеют метод __iter__(),
который возвращает самого себя

В функцию можно передать как контейнер, так и итератор
Функция может вернуть как контейнер, так и итератор
По умолчанию стоит считать, что функция
принимает/возвращает контейнер, но работать с ним
через интерфейс итератора

·
·
·

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 10

Язык программирования http://localhost:8000/slides/

10 of 24 05.04.2014 15:26

Функция iter()
iter(object[, sentinel]) — обёртка для
получения итератора из контейнера

С одним аргументом возвращает результат
object.__iter__()
С двумя аргументами возвращает итератор, который
вызывает object, пока он не вернёт sentinel:
f = open('mydata.txt')
for line in iter(f.readline, ''):
 process_line(line)

·

·

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 11

Язык программирования http://localhost:8000/slides/

11 of 24 05.04.2014 15:26

Функция next()
next(iterator[, default]) — возвращает
следующий элемент итератора (вызывая __next__())
Если указан default, то когда итератор завершится
(бросит исключение StopIteration), будет возвращаться
default

·
·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 12

Язык программирования http://localhost:8000/slides/

12 of 24 05.04.2014 15:26

Пример
>>> r = range(3) # возвращает объект, поддерживающий интерфейс итератора
>>> it = iter(r)
>>> next(it)
0
>>> next(it)
1
>>> next(it)
2
>>> next(it)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>> it = iter("ABC")
>>> next(it, "Done!")
'A'
>>> next(it, "Done!")
'B'
>>> next(it, "Done!")
'C'
>>> next(it, "Done!")
'Done!'
>>> next(it, "Done!")
'Done!'
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 13

Язык программирования http://localhost:8000/slides/

13 of 24 05.04.2014 15:26

Возможности итераторов
Интерфейс итератора абстрагирует доступ к элементам
контейнера

Позволяет создавать "виртуальные"
последовательности

Не обязательно хранить все элементы, если можно
создавать их "на лету"

Реализация собственных итераторов через реализацию
__iter__(), __next__() довольно трудоёмкий процесс,
можно прощё!

·

·
·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 14

Язык программирования http://localhost:8000/slides/

14 of 24 05.04.2014 15:26

Генераторы
>>> def my_generator(n):
... for i, ch in zip(range(n), "ABCDEFGHIK"):
... # Если в функции встречается команда yield, то функция — генератор
... yield ch + str(i)
...
>>> # Генераторы возвращают итератор
... it = my_generator(3)
>>> it
<generator object my_generator at 0x...>
>>> # При вызове генератора код тела функции не выполняется.
... # При попытке получить следующее значение итератора функция выполнится до
... # первого yield
... next(it)
'A0'
>>> # При запросе следующего значения, выполнение функции продолжится
... # с места, где она остановилась на yield в последний раз. Состояние
... # переменных сохраняется, как будто функция и не прерывалась.
... next(it)
'B1'
>>> next(it)
'C2'
>>> next(it) # Когда тело функции заканчивается, итератор считается исчерпанным
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 15

Язык программирования http://localhost:8000/slides/

15 of 24 05.04.2014 15:26

Пример
>>> # Генераторы очень удобны для создания последовательностей
... # "на лету"
... def my_range(start, stop=None, step=1):
... if stop is None:
... start, stop = 0, start
... while start < stop:
... yield start
... start += step
...
>>> list(my_range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(my_range(3, 5))
[3, 4]
>>> list(my_range(3, 10, 2))
[3, 5, 7, 9]
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 16

Язык программирования http://localhost:8000/slides/

16 of 24 05.04.2014 15:26

yield from
>>> # itertools.chain позволяет объединять последовательности
... import itertools
>>> list(itertools.chain(range(5), "ABC", [4, 3, 2, 1, 0]))
[0, 1, 2, 3, 4, 'A', 'B', 'C', 4, 3, 2, 1, 0]
>>> def my_chain(*iterables):
... for iterable in iterables:
... for elem in iterable:
... yield elem
...
>>> list(my_chain("abc", range(4)))
['a', 'b', 'c', 0, 1, 2, 3]
>>> def my_chain2(*iterables):
... for iterable in iterables:
... # В "yield from" генератор будет возвращать значения напрямую из
... # итератора iterable, пока в нём не закончатся элементы.
... yield from iterable
...
>>> list(my_chain2("abc", range(4)))
['a', 'b', 'c', 0, 1, 2, 3]
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 17

Язык программирования http://localhost:8000/slides/

17 of 24 05.04.2014 15:26

Передача значений в yield
>>> def echo(value=None):
... try:
... while True:
... try:
... # Команда yield возвращает значение, которое может быть
... # передано через iterator.send()
... value = (yield value)
... except Exception as e:
... value = e
... except GeneratorExit:
... print("У итератора вызвали close() — запрос на отмену итерирования")
...
>>> it = echo(1) # Передаём начальный value=1
>>> print(next(it))
1
>>> print(next(it)) # По умолчанию результат yield — None
None
>>> # Результат yield можно указать, использовав send() вместо __next__()
... print(it.send(2))
2
>>> # Можно вызвать исключение внутри генератора (в месте yield):
... it.throw(TypeError, "spam")
TypeError('spam',)
>>> # Можно запросить остановку итератора (вызывается при уничтожении объекта,
... # который не закончил итерирование):
... print(it.close())
У итератора вызвали close() — запрос на отмену итерирования
None
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 18

Язык программирования http://localhost:8000/slides/

18 of 24 05.04.2014 15:26

Выражения генераторы
>>> def f(arg, dummy_arg=None):
... print(type(arg))
... for i in arg:
... print(i, end=" ")
...
>>> # Comprehensions, используемые сами по себе, создают контейнеры
... f([x ** 2 for x in range(5)], "test") # будет создан список и передан в f()
<class 'list'>
0 1 4 9 16
>>> # Можно написать генерацию последовательности без скобок контейнера,
... # тогда будет создан генератор:
... f(x ** 2 for x in range(5))
<class 'generator'>
0 1 4 9 16
>>> # Или можно написать круглые скобки:
... f((x ** 2 for x in range(5)), "test")
<class 'generator'>
0 1 4 9 16
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 19

Язык программирования http://localhost:8000/slides/

19 of 24 05.04.2014 15:26

Возможности генераторов
Генераторы позволяют создавать сопрограммы
(coroutines) — обобщённая подпрограмма, которая
имеет несколько точек входа, возможность остановки
выполнения и возможность продолжения выполнения из
того же состояния

Возможность остановить работу функции и затем
продолжить её позволяет делать различные трюки

Фреймворк Twisted на генераторах реализует
асинхронное программирование

·

·
·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 20

Язык программирования http://localhost:8000/slides/

20 of 24 05.04.2014 15:26

Декораторы
При создании функции можно сделать "постобработку"
полученной функции с помощью декоратора

Синтаксис:
@my_decorator
def func():
 pass

эквивалентно:
def func():
 pass
func = my_decorator(func)

·

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 21

Язык программирования http://localhost:8000/slides/

21 of 24 05.04.2014 15:26

Пример
>>> import datetime
>>> import time
>>> def print_time(func):
... def wrapped_func(*args, **kwargs):
... # Обёртка засекает время и вызывает оборачиваемую функцию.
... start_time = datetime.datetime.now()
... try:
... return func(*args, **kwargs)
... finally:
... # По завершению работы функции обёртка выводит время работы
... # функции.
... end_time = datetime.datetime.now()
... num_secs = (end_time - start_time).total_seconds()
... print("Took {} seconds".format(num_secs))
... # Оборачиваемая функция будет заменена возвращаемой декоратором функцией
... return wrapped_func
...
>>> @print_time
... def long_running_func():
... for i in range(10000):
... pass
... return 123
>>> long_running_func()
Took 0.000243 seconds
123
>>>

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 22

Язык программирования http://localhost:8000/slides/

22 of 24 05.04.2014 15:26

Комбинирование декораторов
Можно использовать несколько декораторов и
передавать аргументы в декораторы:
@dec1
@dec2(1, 2)
@dec3()
def func():
 pass

эквивалентно:
def func():
 pass
func = dec3()(func)
func = dec2(1, 2)(func)
func = dec1(func)

·

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 23

Язык программирования http://localhost:8000/slides/

23 of 24 05.04.2014 15:26

Практика

05.04.2014 ФМЛ№ 30. ВладимирВладимировичРуцкий 24

Язык программирования http://localhost:8000/slides/

24 of 24 05.04.2014 15:26

